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1. Introduction

Integrable dynamical systems have a long and distinguished history. The oldest are differential
equations. Famous examples in finite dimensions include the Kepler problem [3], various
spinning tops [4] and the (continuous) Painlevé equations [1]. In infinite dimensions one gets
soliton equations [6]. Some well known examples are the Korteweg–de Vries equation, the
sine-Gordon equation and the nonlinear Schrödinger equation.

More recently, various integrable discrete analogues have been studied: integrable
(partial) difference equations [2,9,16], integrable maps [5,13,15,17,18,24], discrete Painlevé
equations [7] and integrable cellular automata [14, 22, 23].

In [23] a transformation combined with a limiting procedure was introduced to obtain new
integrable equations (see also [22]). The ensuing novel integrable equations can be considered
in various ways. In particular:

(i) The new transformed variables and parameters can be restricted to be integers. This case
has received most attention to date.

(ii) The new transformed variables and parameters can be restricted to take any real values.
This case, which was most notably studied in [8], is the case we will study in this paper.
Through some examples we will discuss piecewise-linear solitons and piecewise-linear
integrable maps.
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As the analysis of case (i) is rather different from the analysis of case (ii), we will distinguish
the two cases for the purposes of this paper by referring to systems (i) as ‘ultradiscrete’3, and
by referring to systems (ii) as ‘piecewise-linear’.

A similarity between ultradiscrete systems and piecewise-linear systems (as defined above)
is that in both cases solitons are compact, a crucial aspect in physical applications. Differences
between the two kinds of systems, and a further discussion of the physical relevance of
piecewise-linear systems, are given in the concluding section of this paper.

2. Piecewise-linear kink solitons

2.1. Piecewise-linear equation and piecewise-linear one-kink solution

Consider the following integrable partial difference equation, the discrete modified Korteweg–
de Vries (MKdV) equation [11]:

v(x, y + 1) = v(x + 1, y)
v(x + 1, y + 1) + gtv(x, y)

tv(x + 1, y + 1) + f v(x, y)
(1)

with

f + t = 1 + gt. (2)

Here the parameters f, g, t and the dependent variable v are assumed to be non-negative
(and real), and the independent variables x and y are assumed to be continuous variables that
can take on any real values (i.e. x, y, f, g, t and v are not discrete and not restricted to be
integers).

It is well known that equation (1) is integrable and that it possesses n-kink solutions [11].
The Lax representation of the discrete MKdV equation (1) is given by

u(x + 1, y) = l(x, y)u(x, y) u(x, y + 1) = m(x, y)u(x, y) (3)

where the Lax matrices l and m are given by

l =
(

f tv(x + 1, y)
tk/v(x, y) v(x + 1, y)/v(x, y)

)

m =
(

g v(x, y + 1)
k/v(x, y) v(x, y + 1)/v(x, y)

) (4)

where k is a spectral parameter and u(x, y) is a two-dimensional vector (depending on k as
well). Taking the compatibility condition of the two equations in (3), and substituting (4), we
obtain the discrete MKdV equation (1).

The solutions of the discrete MKdV equation can be derived from a linear integral equation
given in [11]. For example, the one-kink solution of equation (1) is given by

v(x, y) = 1 + caxbys

1 + caxby
(5)

where c and s are arbitrary constants, and a, b and s are related by

a = 1 + f s

f + s

b = 1 + gs

g + s
.

(6)

3 This name has been frequently used to refer to both cases (i) and (ii).
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We now show how to take the piecewise-linear limit of equation (1) and its one-kink
solution (5), (6). To this end, assume that c and s are non-negative, and define the transformation

v(x, y) =: eV (x,y)/ε

a =: eA/ε f =: eF/ε

b =: eB/ε g =: eG/ε

c =: eC/ε t =: eT/ε

s =: eS/ε

(7)

where ε is a (small) positive parameter. Using the new variable V and the new parameters,
equation (1) becomes

V (x, y + 1)− V (x + 1, y) = ε log[1 + e(G+T +V (x,y)−V (x+1,y+1))/ε]

−ε log[eT/ε + e(F+V (x,y)−V (x+1,y+1))/ε] (8)

with

eF/ε + eT/ε = 1 + e(G+T )/ε. (9)

The one-kink solution (5), (6) becomes

V (x, y) = ε log[1 + e(C+Ax+By+S)/ε] − ε log[1 + e(C+Ax+By)/ε] (10)

where

A = ε log[1 + e(F+S)/ε] − ε log[eF/ε + eS/ε]
B = ε log[1 + e(G+S)/ε] − ε log[eG/ε + eS/ε].

(11)

We can now use the crucial identity [23]

lim
ε↓0
ε log[eα/ε + eβ/ε] = max(α, β) (12)

to obtain the piecewise-linear soliton equation4:

V (x, y + 1)− V (x + 1, y) = max[0,G + T + V (x, y)− V (x + 1, y + 1)]

− max[T , F + V (x, y)− V (x + 1, y + 1)] (13)

where T is (uniquely) determined by5

max[F, T ] = max[0,G + T ]. (14)

(Equations (13) and (14) have been derived under the assumption

t = (1 − f )(1 − g) > 0

i.e. FG > 0. For FG < 0, one obtains a slightly different piecewise-linear soliton equation
in which V (x, y)− V (x + 1, y + 1) is explicitly given in terms of V (x, y + 1)− V (x + 1, y)
with a slightly different definition for T .)

The piecewise-linear one-kink solution becomes

V (x, y) = max[0, Ax + By + C + S] − max[0, Ax + By + C] (15)

with

A = max[0, F + S] − max[F, S]

B = max[0,G + S] − max[G, S].
(16)

4 Note that equation (13) is invariant under F ↔ G, x ↔ y, T ↔ −T . We therefore restrict our discussion to the
case |G| > |F |.
5 If G �≡ 0.
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Figure 1. One-soliton solution as a function of the similarity variable η = Ax + By + C.

A typical kink is plotted in figure 1. Note that the soliton is completely localized. This is a
crucial feature of piecewise-linear solitons (for other examples of compact solitons see [19]).
We can define a ‘width’:

w = |S|√
A2 + B2

(17)

a ‘velocity’:

v = B

A
(18)

and a height:

h = |S|. (19)

Plotting A and B as a function of the free parameter S, we obtain (for generic negative
values of the parameters F andG) the relationship depicted in figure 2. IfG �= −∞, we may
distinguish three regimes:

(I) 0 < |S| < |F | : w = 1/
√

2 v = 1 (20)

(II) |F | < |S| < |G| : w = |S|√
F 2 + S2

v =
∣∣∣∣ SF

∣∣∣∣ (21)

(III) |G| < |S| : w = |S|√
F 2 +G2

v = G

F
. (22)

Note that in general there is a finite minimum velocity, a finite maximum velocity, and a finite
minimum width. The soliton velocity and width as functions of the free parameter S are plotted
in figure 3.

2.2. Piecewise-linear two-kink solution

Similarly, the two-kink solution of equation (13) is given by

V (x, y) = max[0, A1x + B1y + C1 + S1, A2x + B2y + C2 + S2,

(A1 + A2)x + (B1 + B2)y + C1 + C2 + S1 + S2 + L]

− max[0, A1x + B1y + C1, A2x + B2y + C2,

(A1 + A2)x + (B1 + B2)y + C1 + C2 + L] (23)

where
Ai := max[0, F + Si] − max[F, Si]

Bi := max[0,G + Si] − max[G, Si]
(24)

and the phase shift L is given by
L

2
= max[S1, S2] − max[0, S1 + S2]. (25)
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Figure 2. Soliton parameters A and B as a function of S. (For |S| < −F , A and B coincide.)
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Figure 3. Soliton velocity, v, and width, w, as a function of the free parameter S.

To analyse the general two-kink solution, we introduce

η1 = A1x + B1y + C1

η2 = A2x + B2y + C2.
(26)

Hence the two-kink solution (23) becomes

V (η1, η2) = max[0, η1 + S1, η2 + S2, η1 + η2 + S1 + S2 + L] − max[0, η1, η2, η1 + η2 + L].

(27)

A schematic plot of V (η1, η2) is given in figure 4 in the case S1 < 0, S2 > 0, S1 + S2 < 0,
L = 2S2 (for other combinations of S1, S2 and L, similar pictures can be made). In figure 5
we distinguish nine different regions R1, . . . ,R9 in which the two-soliton solution is given by

R1 : 0 R5 : η2 + S2

R2 : S1 R6 : −η1

R3 : S2 R7 : −η1 − S2

R4 : S1 + S2 R8 : η2 + S1 + 3S2

R9 : −η1 − η2 − 2S2.

(28)

To interpret the soliton behaviour note that in equation (13) V (x, y + 1)− V (x + 1, y) is
explicitly expressed in terms of V (x, y)− V (x + 1, y + 1). This means that V can be solved
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Figure 4. Two-kink solution. The η1 and η2 axes are as indicated in figure 5.

Figure 5. Schematic picture of the regions in the η1, η2 plane with different functional forms for
the two-kink solution, in the special case S1 < 0, S2 > 0, S1 + S2 < 0, L = 2S2, with a typical
line η2 = λη1 + µ (as meant in the discussion below equation (30)).

on a lattice V (x +m, y + n),m, n ∈ Z, specifying initial conditions on the edges of a staircase
containing steps to the right in the x direction and upwards in the y direction (and having
V (x, y) as one of the edges) as depicted in figure 6.

We now introduce a time variable t and a spatial variable ξ , being a linear combination of
x and y such that, on every line of type αx +βy = constant, αβ > 0 with only one intersection
point with the staircase, t is a monotonically increasing (or decreasing) function of x. This
means that we can take t = (1 − ν)x − νy with 0 < ν < 1 as the time variable. The spatial
variable is ξ = νx + (1 − ν)y. We choose ν such that η1, the similarity variable of soliton 1,
is proportional to ξ , i.e.

ν = A1

A1 + B1
t = B1x − A1y

A1 + B1
ξ = A1x + B1y

A1 + B1
. (29)
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V(x-1, y)

V(x, y)

V(x, y+1)

Figure 6. Example of a staircase with edge V (x, y) to specify initial conditions for equation (13).

With (29), η1 and η2 can be expressed as

η1 = (A1 + B1)ξ + C1 η2 = λη1 + µ(t) (30)

where

λ = A1A2 + B1B2

A2
1 + B2

1

µ(t) = − t (A1B2 − A2B1)(A1 + B1)

A2
1 + B2

1

+ C2 − C1
A1A2 + B1B2

A2
1 + B2

1

.

In discussing the qualitative behaviour of the two-soliton solution we consider two cases:
(1) A1B2 − A2B1 �= 0 and (2) A1B2 − A2B1 = 0.

Case 1. A1B2 − A2B1 �= 0. If the solitons have parameters in different regimes (given by
equations (20)–(22)), i.e. (II, I), (III, I), (III, II) or in (II, II) with S2 + S1 < 0, they have
different velocities, i.e. A1B2 − A2B1 �= 0.

In all cases, we have −1 < λ < S2/S1 and µ is a decreasing function of t . A typical line
η2 = λη1 + µ satisfying this requirement has been drawn in figure 5. By drawing six lines
parallel to this line through the points A, B, C, D, E and F we can distinguish seven different
regimes (1), (2), (3), (4), (5), (6) and (7) of solitonic behaviour for decreasing t (the line in
figure 5 lies in regime (4)).

The two-soliton solution as a function of η1 in regimes (1), (2), . . . , (7) has been sketched
in figure 76. A slightly different behaviour in regions (3) and (5) consisting of four lines with
slopes −1,−1 − λ,−1, λ and λ,−1,−1 − λ,−1, respectively, occurs for λ values closer to
−1.

Case 2. A1B2 − A2B1 = 0. Choosing both S1 and S2 in regime (I) or in regime (III) we
haveA1B2 −A2B1 = 0 corresponding to the case that solitons 1 and 2 have the same velocity.
In that case we have a ‘stationary solution’ not depending on t and being only a function of
the variable ξ . The values of λ in (I, I) and (III, III) are S2/S1 and −1, respectively, and are
limiting cases of the λ values in case 1.

In regime (I, I), depending on C1 and C2, we can have stationary solutions with η1

dependence as in regimes (1), (3), (5) and (7) of figure 5. In regime (III, III) with λ = −1 we
only have stationary solutions with η1 as in regimes (1) and (7). In the limiting case S2 = −S1

we can also have stationary solutions with solitons 1 and 2 in regime (II), the slope λ in that
case being equal to −1.

6 The situation sketched in figure 7 corresponds to the case 2S2
S1−S2

< λ < S2/S1. A similar picture can be found in

the case when −1 < λ < 2S2
S1−S2

.
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2 kink solution µ = −1 2 kink solution µ = −1.2

2 kink solution µ = −1.3 2 kink solution µ = −1.5

2 kink solution µ = −1.7 2 kink solution µ = −1.8

2 kink solution µ = −2

Figure 7. The seven stages of the two-kink collision for the case 2S2
S1−S2

< λ <
S2
S1

. The two-kink
solution V as a function of η1 is plotted for different values of µ and for a generic choice of the
parameters (S1 = −2, S2 = 1, λ = −0.6). The large kink is coming in from the left and coming
out at the right. The small kink is the opposite of this.

2.3. Piecewise-linear Lax representation

We also derive a Lax representation for the piecewise-linear equation (13). The summation
and multiplication of two matrices A and B in the piecewise-linear version are defined by

[A⊕ B]ij := max(Aij , Bij )

[A⊗ B]ij := max
k
(Aik + Bkj ).

(31)

Similarly, the ‘Trace’ of a matrix A, and the inner product with a vector a, are given by

TrA = max
k
Akk

[A⊗ a]i = max
k
(Aik + ak).

(32)

The Lax representation (3), (4) thus becomes

U(x + 1, y) = L(x, y)⊗ U(x, y) U(x, y + 1) = M(x, y)⊗ U(x, y) (33)

with

L(x, y) =
(

F T + V (x + 1, y)
T +K − V (x, y) V (x + 1, y)− V (x, y)

)

M(x, y) =
(

G V (x, y + 1)
K − V (x, y) V (x, y + 1)− V (x, y)

)
.

(34)
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The ‘Trace’ of a matrix product is invariant under cyclic shifts:

TrA⊗ B =
∑
i,k

max(Aik + Bki) = TrB ⊗ A. (35)

The compatibility condition of (33) and (34), i.e.

L(x, y + 1)⊗M(x, y) = M(x + 1, y)⊗ L(x, y) (36)

leads to the piecewise-linear soliton equation (13), as can be seen as follows: substituting (34)
into (36), and using (31), one finds that the (1, 1) elements on the right- and the left-hand sides
of (36) are identical, as are the (2, 2) elements. The (1, 2) and (2, 1) elements yield

max[F + V (x, y + 1), T + V (x + 1, y + 1) + V (x, y + 1)− V (x, y)]
= max[G + T + V (x + 1, y), V (x + 1, y + 1) + V (x + 1, y)− V (x, y)] (37)

and

max[T +G +K − V (x, y + 1),K + V (x + 1, y + 1)− V (x, y + 1)− V (x, y)]
= max[F +K − V (x + 1, y), T +K + V (x + 1, y + 1)

−V (x + 1, y)− V (x, y)] (38)

respectively. It is now easy to see that the dependence of the spectral parameter K drops out
of equation (38), and that both (37) and (38) are equivalent to the piecewise-linear soliton
equation (13). (The above derivation applies in the case FG > 0. In the other case, FG < 0,
a slightly different Lax representation has to be used in order to find the piecewise-linear
equation with V (x, y)−V (x + 1, y + 1) explicitly given in terms of V (x, y + 1)−V (x + 1, y).)

Finally, note that the Lax representation (33) is linear in U(x, y) with respect to the max
operation. That is, if U1(x, y) and U2(x, y) are solutions of (33), so is Ũ with components
Ũi = max[λ + U1i , µ + U2i].

3. Piecewise-linear lump solitons

Defining

W(x, y) := V (x, y)− V (x + 1, y + 1) (39)

it follows thatW satisfies the following equation:

W(x, y + 1)−W(x + 1, y) = max[0,G + T +W(x, y)]

− max[T , F +W(x, y)] − max[0,G + T +W(x + 1, y + 1)]

+ max[T , F +W(x + 1, y + 1)] (40)

and the lump solitons follow by inserting (15) and (23) in (39). A typical lump soliton is given
in figure 8. Note that it is completely localized.

4. Piecewise-linear integrable maps

One can also derive piecewise-linear integrable maps from smooth integrable maps, using a
transformation similar to the one given in (7). For example, from an eight-parameter subset of
the 18-parameter family of integrable maps of the plane given in [17], one obtains the following
piecewise-linear integrable map [21]:

X′ = −X + max(F + Y,H, J − Y )− max(A + Y,B,E − Y )
Y ′ = −Y + max(E +X′,G, J −X′)− max(A +X′, C, F −X′)

(41)
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Figure 8. A one-lump soliton obtained by substituting the parameter values A = −2, B = −1,
C = 5, F = −1, G = −1 and S = 4 at y = 0 into equation (15) and in turn substituting this
expression into equation (39).

Figure 9. A plot of the eight-parameter piecewise-linear integrable map, where the parameters
A,B,C,E, F,G,H and J are equal to 2, 2, 2,−4,−4,−1, 0 and 1, respectively. The number of
sides possessed by each invariant polygon decreases from 8 to 7 to 6 to 5 to 4 and then to 3.

where A,B,C,E, F,G,H, J are arbitrary parameters in R ∪ −∞.
The map (41) is area-preserving, reversible, and possesses the piecewise-linear integral

I (X, Y ) = max(A +X + Y,B +X,C + Y,E +X − Y, F −X + Y,

G− Y,H −X, J −X − Y ). (42)

A phase plot for the map (41) is given in figure 9.
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V0 V1 Vz Vz

V0 V1

′

Figure 10. Staircase and mapping in the special case z1 = z, z2 = 1.

In the special case of X − Y symmetry, (41) and (42) can be reduced to

X′ = −Y + max(C +X,E,F −X)− max(A +X,B,C −X)
Y ′ = X (43)

and

I (X, Y ) = max(A +X + Y,B +X,B + Y,C +X − Y,C −X + Y,

E − Y,E −X,F −X − Y ). (44)

More details of the maps (41) and (43) will be given in a separate paper.
One can also derive piecewise-linear integrable maps from equation (13). To this end,

consider solutions of equation (13) that satisfy a periodicity property

V (x, y) = V (x + z1, y + z2). (45)

If this is the case, we can specify initial conditions on a staircase connecting (x, y) and
(x + z1, y + z2) by z1 horizontal steps to the right and z2 upward vertical steps. Defining
a mapping by a horizontal shift

V (x, y) −→ V ′(x, y) = V (x + 1, y)

we obtain a (z1 + z2)-dimensional mapping for the fields Vk at the vertices of the staircase and
their iterates (where k = z2x − z1y).

As an example, we consider here the special case z1 = z, z2 = 1 (sketched in figure 10).
We obtain the (z + 1)-dimensional mapping

V ′
0 = V1

V ′
1 = V2

...
... (46)

V ′
z−1 = Vz
V ′
z = V0 + max[0,G + T + Vz − V1] − max[T , F + Vz − V1].

(Note that, defining Zi := Vi+1 − Vi , equation (46) reduces to a z-dimensional mapping.)
To find the integrals, consider the monodromy matrix along the staircase

τ = M(x + z, y)⊗ L(x + z− 1, y)⊗ · · · ⊗ L(x + 1, y)⊗ L(x, y) (47)

withM and L given by equation (34).
The monodromy matrix after a horizontal shift is given by τ ′, which is obtained from τ ,

replacing the Vk by the iterated quantities V ′
k .

From the compatibility condition and the periodicity (45), we find

τ ′ = L(x, y)⊗M(x + z, y)⊗ L(x + z− 1, y)⊗ · · · ⊗ L(x + 1, y) (48)

and using the invariance of the ‘Trace’ as in equation (35) we have

Tr(τ ′) = Tr(τ ) (49)
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implying that also in the piecewise-linear case the integrals of the mapping are given by the
‘Trace’ of the monodromy matrix, defined by (32) and (47).

The actual evaluation of the invariants for general z is similar to the analytic case in [15].
For z = 2 we have, taking V1 − V0 = Z0 and V2 − V1 = Z1,

I = max[2F +G−K − T ,G + T + Z0 + Z1, F − Z0, Z1, F − Z1,

Z0, T − Z0 − Z1,−K − T ]. (50)

Here K is a spectral parameter which may have arbitrary values. Taking K → ∞, both
K-dependent terms do not contribute to the maximum and can be dropped.

Proceeding in a similar way for z = 3 and removing (constant) K-dependent terms, we
obtain the integral, taking V2 − V0 = U0 and V3 − V1 = U1,

I = max[T + F +G + U0, 2F − U0, F +G + T + U1,G + T + U0 + U1, F − U0 + U1, U1,

2F − U1, F + U0 − U1, F + T − U0 − U1, T − U1, U0, T − U0]. (51)

The piecewise-linear mappings for z = 2 and 3 with integrals I given by (50) and (51)
are special cases of equation (43). (Another special case was treated in [22].)

In case z � 4, different K-dependent terms under the maximum contain nontrivial
contributions in terms of the fields V0, . . . , Vz, yielding two or more integrals of the mappings.

5. Concluding remarks

5.1. Differences between ultradiscrete and piecewise-linear systems

In the introduction we noted that an important difference between ultradiscrete and piecewise-
linear systems (as defined there) is that in the former the variables and parameters are restricted
to be integers, whereas in the latter they are real numbers. This fact (and specifically the many
degenerate maxima in the ultradiscrete case) makes the analysis of piecewise-linear systems
much more straightforward. (The results concerning ultradiscrete systems may be inferred as
special cases.) Consider, for example, figure 9. If we restricted the values of the variables X
and Y to be integers, the analysis (as given in [21]) of changes occurring in the shapes of the
invariant sets would become much more complicated. Similarly, the analysis of bifurcations
associated with continuous parameter changes would become impossible. Similar comments
can be made concerning the analysis of two-kink solutions, etc.

5.2. Physical relevance

As mentioned above, a general aspect of piecewise-linear solitons is that they are compact
(liberating us from ‘the infinite tail of solitons one learns to live with but (that) should not
be mistaken for reality’ [20]). One could argue that limits such as (7), and hence non-
analytic equations such as (13), do not occur in physics as such, but we expect the piecewise-
linear equations to give qualitative insight concerning the various stages of soliton-scattering
processes. Furthermore it should be realized that, for small but finite ε, the analytic equation (8)
and its analytic solutions are extremely similar to equation (13) and its solutions.

As far as our specific model (13) goes, one of the important physical aspects of its kink
solutions is the existence of a minimum and maximum velocity, and a minimum width (see
figure 3). In the limit as G → −∞, the maximum velocity goes to ∞, and the model
exhibits tachyon-like particles with minimum velocity 1. It would be interesting to see if other
piecewise-linear soliton equations exhibit similar properties. This may be addressed following
the lines of this paper starting from other known integrable difference equations in two [11,16]
and three dimensions [10, 12].
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